From 1 - 8 / 8
  • ObjectivesThe hyperspectral images (HI) is at the moment still too poorly considered; nevertheless its specificities make a weighty auxiliary for the monitoring of the elements of the urban area. The HYEP project has for objective to propose a panel of methods and processes designed for hyperspectral imaging. We take into account other existing sensors in order to compare the performances. If the IH is complementary to the sensors HRS and VHRS due to its better radiometric richness, it allows to identify and to characterize the natural or anthropogenic elements in a complementary perspective. To this end methods for the extraction of information had to be adapted, created even. The methodological part of the project articulated at the same time in the solidification of the current approaches and the design of new methods. Results have been presented along the project duration to scientific community and local authorities. One of the milestones of the works was the comparison of the results to various spatial resolutions to specify the contribution of such a hyperspectral sensor with regard to those existing or to come. Data and data processing Methods: existing or adapted The methods were chosen among all the existing methods by adapting them to the signal, among spectral ranges and to the characteristics of urban areas. Since data arose from airborne platforms, the first developments were realized to counter the effects of the atmosphere on the IH (atmospheric correction - 3 tested methods) and a database of spectral signature for diverse elements of land use in town (roofs, roads, the vegetation etc.) was established. It allowed encircling better the spectral values of materials. It was set up based simultaneously on the literature, in situ and laboratory measurements. Its contributions in various classification processing were tested. Methods for information, extraction, pansharpening or classification purposes were used for various spatial and spectral resolutions to highlight its interest towards other sensors and also its benefits for a spatial mission. Classification and unmixing methods have been adapted and spatial pattern indicators for urban areas defined.Outcomes- 3 atmospheric correction methods have been tested; it leads to a specific code development by ONERA.- Methods adaptation : pansharpening and unmixing- Transfer: a complete design of the study has been transfered to Kaunas (Lituania) teams- Algorithms: Depository on http://openremotesensing.net/- One of the major results is the extraction and the identification of photovoltaic panel- CNRS Summer school 2017Scientific productionThe team has presented at ISPRS Geospatial Week 2015, GeoHyper (2015), Jurse 2017, IGARSS 2016-2017, SFPT or workshops TEMU, AFIGEO and to GdR Session (MaDics and ISIS) or within the framework of the Hypxim mission. The team organized special conference sessions at the national level, SFPT hyperspectral (2016) and international level IGARSS 2018 and WHISPERS 2018. A thematic CNRS summer school (2017 August 28 - September 1st - 25 participants) has been set up.The project gave rise to 10 publications Rang A and 38 communications, 4 chapters and a special issue for the RemoteSensing journal.

  • Cette carte est issue de travaux de recherche menés dans le cadre du projet GABIR (Gestion Agricole des Biomasses à l’échelle de l’Ile de la Réunion). Elle a été produite en utilisant une mosaïque d'images Spot6/7 pour calculer la segmentation (extraction d'objets homogènes à partir de l'image). Nous utilisons une base de données terrain ayant une nomenclature emboitée avec 3 niveaux de précision nous permettant de produire une classification par niveau. Le niveau 3, le plus détaillé distinguant les types de cultures présente une précision globale de 86% et un indice de Kappa est de 0,85. Le niveau 2, distinguant les groupes de cultures présente une précision globale de 91% et un indice de Kappa est de 0,90. Le niveau 1, distinguant les grands groupes d'occupation du sol présente une précision globale de 97% et un indice de Kappa est de 0,95. (2019-06-12) La précision globale de la carte est de 88,71 % et l'indice de Kappa est de 86,47%. La chaine Moringa est mise au point au sein du CES Occupation des Sols du pôle THEIA pour cartographier l’occupation du sol dans les contextes variés des pays du Sud. Afin d’être plus facilement reproductible, elle est automatisée et son implémentation est réalisée avec des outils libres (Orfeo Toolbox, R, Python). (2019-03-26)

  • Hyperspectral data were obtained during an acquisition campaign led on Toulouse (France) urban area on July 2015 using Hyspex instrument which provides 408 spectral bands spread over 0.4 – 2.5 μ. Flight altitude lead to 2 m spatial resolution images. Supervised SVN classification results for 600 urban trees according to a 3 level nomenclature: leaf type (5 classes), family (12 and 19 classes) and species (14 and 27 classes). The number of classes differ for the two latter as they depend on the minimum number of individuals considered (4 and 10 individuals per class respectively). Trees positions have been acquired using differential GPS and are given with centimetric to decimetric precision. A randomly selected subset of these trees has been used to train machine SVM and Random Forest classification algorithms. Those algorithms were applied to hyperspectral images using a number of classes for family (12 and 19 classes) and species (14 and 27 classes) levels defined according to the minimum number of individuals considered during training/validation process (4 and 10 individuals per class, respectively). Global classification precision for several training subsets is given by Brabant et al, 2019 (https://www.mdpi.com/470202) in terms of averaged overall accuracy (AOA) and averaged kappa index of agreement (AKIA).

  • Cette carte a été produite dans le cadre du projet FUI-2012 SIRHYUS (Services d'Information pour la gestion des Ressources HYdriques et de leurs USages) et a bénéficié d'une aide de l'Etat gérée par l'Agence Nationale de la Recherche au titre du Programme Investissements d'Avenir pour le projet EQUIPEX GEOSUD ANR-10-EQPX-20.

  • Ce jeu de données concerne les cartes produites, pour l'année 2019, en utilisant une mosaïque d'images Spot6/7 pour calculer la segmentation (extraction d'objets homogènes à partir de l'image). Nous utilisons une base de données terrain ayant une nomenclature emboitée avec 3 niveaux de précision nous permettant de produire une classification par niveau. Le niveau le plus détaillé distinguant les types de cultures présente une précision globale de 88% et un indice de Kappa est de 0,86. Le niveau 2, distinguant les groupes de cultures présente une précision globale de 92% et un indice de Kappa est de 0,93. Le niveau 1, distinguant les grands groupes d'occupation du sol présente une précision globale de 97% et un indice de Kappa est de 0,95. Une fiche détaillée présentant la méthode et les résultats de validation est téléchargeable (2020-04-30)

  • Cette carte a été produite dans le cadre de la convention 2010 -- 0190 de l'Agence de l'Eau Rhône Méditerranée et Corse concernant l'optimisation d'une méthode de quantification du rôle des corridors rivulaires sur l'état écologique des cours d'eau.

  • This dataset provides georeferenced polygon vectors of individual tree canopy geometries for dryland areas in West African Sahara and Sahel that were derived using deep learning applied to 50 cm resolution satellite imagery. More than 1.8 billion non-forest trees (i.e., woody plants with a crown size over 3 m2) over about 1.3 million km2 were identified from panchromatic and pansharpened normalized difference vegetation index (NVDI) images at 0.5 m spatial resolution using an automatic tree detection framework based on supervised deep-learning techniques. Combined with existing and future fieldwork, these data lay the foundation for a comprehensive database that contains information on all individual trees outside of forests and could provide accurate estimates of woody carbon in arid and semi-arid areas throughout the Earth for the first time.

  • Cette carte d'occupation du sol a été obtenue avec la chaîne Moringa mise au point par l’équipe Cirad de l’UMR TETIS. Il s’agit du résultat d’une classification supervisée combinant une mosaïque d’images Spot6/7 acquises en 2021, d’indices de textures calculés à partir de cette image Spot6/7 et de la sérietemporelle des 63 images Sentinel-2 de 2021 . Cette carte a été réalisée avec une base de données d’apprentissage actualisée en 2021. La carte présentée s'appuie sur le 3ème niveau (le plus détaillé), les données attributaires contiennent les niveaux 1 et 2. Les fichiers de style de ces niveaux sont associés à cette carte.